FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF AGRICULTURE AND NATURAL RESOURCES SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES AND AGRIBUSINESS | QUALIFICATIONS: BACHELOR OF SCIENCE IN AGRICULTURE | | | | | |--|-----------|-------------|------------------------------|--| | BACHELOR OF SCIENCE IN HORTICULTURE | | | | | | QUALIFICATIONS CODE: 07BAGA | | LEVEL: 7 | | | | | 07BHOR | LEVEL. / | | | | COURSE CODE: ICA511S | | COURSE NAME | :: INTRODUCTION TO CHEMISTRY | | | SESSION: | JULY 2023 | PAPER: | THEORY | | | DURATION: | 3 HOURS | MARKS: | 120 | | | | SECOND OPPORTUNITY EXAMINATION QUESTION PAPER | | |------------|---|--| | EXAMINER: | MS. PAULINA NDINELAGO NAUPU | | | MODERATOR: | MRS. LUCIA TUYENI-KELAO KAFIDI | | #### **INSTRUCTIONS** - 1. Answer all the questions. - 2. Write neatly and clearly. - 3. Mark all answers clearly with their respective question numbers. - 4. All written work MUST be done in blue or black ink. - 5. No books, notes and other additional aids are allowed. #### **PERMISSIBLE MATERIALS** - 1. Calculator - 2. Examination paper - 3. Examination script THIS QUESTION PAPER CONSISTS OF 4 PAGES (Excluding This Front Page) | QUESTION 1 | | | | | | |--|---|--------------------|--|--|--| | Write the name/formula of the following: | | | | | | | 1.1 | HBr | {2} | | | | | 1.2 | HNO ₃ | {2} | | | | | 1.3 | H ₂ SO ₃ | {2} | | | | | 1.4 | Potassium hydroxide | {2} | | | | | | | | | | | | | | [8] | | | | | QUEST | TION 2 | | | | | | | | | | | | | 2.1 | How many mL of 2.0M H_2SO_4 are needed to make 400mL of 0.11M H_2SO_4 | {4} | | | | | | | | | | | | 2.2 | 24.6 mL of a 0.50M monoprotic acid solution was titrated with a 0.18M NaOH so | | | | | | | What is the volume of NaOH that should be added to the solution in order to rea equivalence point? | ch the {4} | | | | | | equivalence points | 14 } | | | | | 2.3 | Suppose you want to prepare 250 mL of 0.100 M CuSO ₄ solution by diluting a 1.0 | 0 M | | | | | | CuSO ₄ stock solution. What volume of CuSO ₄ do you need? | {4} | | | | | | | | | | | | 2.4 | Milest in the group of 0.20 yearles Mar/NO. | (2) | | | | | 2.4 | What is the mass of 0.30 moles Mg(NO ₃) ₂ | {3}
[15] | | | | | | | [13] | | | | | QUESTION 3 | | | | | | | | | | | | | | 3.1 | A rock has a mass of 20.5 g and a volume of 15.05 cm3. What is its density? | {3} | | | | | 3.2 | A rook has a density of 10.2 g/am ³ . If you have a rook har with a valume of | | | | | | 5.2 | A rock has a density of 18.3 g/cm ³ . If you have a rock bar with a volume of 43.9 cm ³ , what is its mass? | {3} | | | | | | 10.5 cm ; white is its mass. | [6] | | | | | | | | | | | 6 1 ## **QUESTION 4** | 4.1 | If a compound has an empirical formula of CH_2 and a molar mass of 84 g/mol, w molecular formula | hat is its
{6} | |------|--|----------------------------------| | 4.2 | A compound has an empirical formula of C_2H_5 and a molar mass of 58 g/mol. When the molecular formula? | hat is its
{6}
[12] | | OUFS | STION 5 | | | 5.1 | Consider copper (II) bromide CuBr2, calculate the percentage of copper and bro | mide
{6} | | 5.2 | What mass of oxygen gas is required to completely react with 25.0 grams of iror produce iron(III) oxide, Fe 2 O 3 according to the following balanced equation: $4 \rightarrow 2Fe_2O_3$? | | | OUES | TION 6 | | | | ce the following equations | | | 6.1 | Fe ₂ (SO ₄) ₃ + KOH \rightarrow K ₂ SO ₄ + Fe (OH) ₃ | {2} | | 6.2 | $Mg + N_2 \rightarrow Mg_3N_2$ | {2} | | 6.3 | $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$ | {2}
[6] | | OUES | TION 7 | | | | late the formula weight (FW) of the following substances. | | | 7.1 | CH₃COOH | {2} | | 7.2 | H ₂ SO ₄ | {2} | | 7.3 | KMnO4 | {2}
[6] | | | TION 8 | | | | late the percentage composition of carbon in the following substances. | | | 8.1 | C ₁₂ H ₂₂ O ₁₁ | {5 } | | 8.2 | C₅H ₉ NO ₂ | {5}
[10] | ## **QUESTION 9** | 2 moles of propane react with 8 moles of oxygen gas in a combustion reaction in the following equation: $1C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ | | | | | |--|---|--------------------|--|--| | 9.1 | What is the limiting reactant | | | | | 9.2 | How many moles of carbon dioxide are formed | | | | | 9.3 | How much of the excess reactant is left over? | {5}
[16] | | | | QUESTION 10 10.1 Calculate the molarity of a solution prepared by dissolving 9.8 moles of solid NaOH | | | | | | | in enough water to make 3.62 L of solution. What does your answer tell you | | | | | 10.2 | You dissolve 152.5 g of $CuCl_2$ in water to make a solution with a final volume of 2.25 L. What is its molarity? | {6}
[12] | | | | QUESTION 11 | | | | | | 30g of C_3H_8 burns in air to produce 70g of CO_2 using the following reaction $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$. | | | | | | 11.1 | Calculate the theoretical yield | {7} | | | | 11.2 | Calculate the percent yield | {3}
[10] | | | ### **QUESTION 12** Draw the atomic structure of Sodium (Na). Please indicate the number of electrons, neutrons, and protons with their respective charges the element has. [8] Total Marks: 120