

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF AGRICULTURE AND NATURAL RESOURCES SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES AND AGRIBUSINESS

QUALIFICATIONS: BACHELOR OF SCIENCE IN AGRICULTURE				
BACHELOR OF SCIENCE IN HORTICULTURE				
QUALIFICATIONS CODE: 07BAGA		LEVEL: 7		
	07BHOR	LEVEL. /		
COURSE CODE: ICA511S		COURSE NAME	:: INTRODUCTION TO CHEMISTRY	
SESSION:	JULY 2023	PAPER:	THEORY	
DURATION:	3 HOURS	MARKS:	120	

	SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	MS. PAULINA NDINELAGO NAUPU	
MODERATOR:	MRS. LUCIA TUYENI-KELAO KAFIDI	

INSTRUCTIONS

- 1. Answer all the questions.
- 2. Write neatly and clearly.
- 3. Mark all answers clearly with their respective question numbers.
- 4. All written work MUST be done in blue or black ink.
- 5. No books, notes and other additional aids are allowed.

PERMISSIBLE MATERIALS

- 1. Calculator
- 2. Examination paper
- 3. Examination script

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Excluding This Front Page)

QUESTION 1					
Write the name/formula of the following:					
1.1	HBr	{2}			
1.2	HNO ₃	{2}			
1.3	H ₂ SO ₃	{2}			
1.4	Potassium hydroxide	{2}			
		[8]			
QUEST	TION 2				
2.1	How many mL of 2.0M H_2SO_4 are needed to make 400mL of 0.11M H_2SO_4	{4}			
2.2	24.6 mL of a 0.50M monoprotic acid solution was titrated with a 0.18M NaOH so				
	What is the volume of NaOH that should be added to the solution in order to rea equivalence point?	ch the {4}			
	equivalence points	14 }			
2.3	Suppose you want to prepare 250 mL of 0.100 M CuSO ₄ solution by diluting a 1.0	0 M			
	CuSO ₄ stock solution. What volume of CuSO ₄ do you need?	{4}			
2.4	Milest in the group of 0.20 yearles Mar/NO.	(2)			
2.4	What is the mass of 0.30 moles Mg(NO ₃) ₂	{3} [15]			
		[13]			
QUESTION 3					
3.1	A rock has a mass of 20.5 g and a volume of 15.05 cm3. What is its density?	{3}			
3.2	A rook has a density of 10.2 g/am ³ . If you have a rook har with a valume of				
5.2	A rock has a density of 18.3 g/cm ³ . If you have a rock bar with a volume of 43.9 cm ³ , what is its mass?	{3}			
	10.5 cm ; white is its mass.	[6]			

6 1

QUESTION 4

4.1	If a compound has an empirical formula of CH_2 and a molar mass of 84 g/mol, w molecular formula	hat is its {6}
4.2	A compound has an empirical formula of C_2H_5 and a molar mass of 58 g/mol. When the molecular formula?	hat is its {6} [12]
OUFS	STION 5	
5.1	Consider copper (II) bromide CuBr2, calculate the percentage of copper and bro	mide {6}
5.2	What mass of oxygen gas is required to completely react with 25.0 grams of iror produce iron(III) oxide, Fe 2 O 3 according to the following balanced equation: $4 \rightarrow 2Fe_2O_3$?	
OUES	TION 6	
	ce the following equations	
6.1	Fe ₂ (SO ₄) ₃ + KOH \rightarrow K ₂ SO ₄ + Fe (OH) ₃	{2}
6.2	$Mg + N_2 \rightarrow Mg_3N_2$	{2}
6.3	$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$	{2} [6]
OUES	TION 7	
	late the formula weight (FW) of the following substances.	
7.1	CH₃COOH	{2}
7.2	H ₂ SO ₄	{2}
7.3	KMnO4	{2} [6]
	TION 8	
	late the percentage composition of carbon in the following substances.	
8.1	C ₁₂ H ₂₂ O ₁₁	{5 }
8.2	C₅H ₉ NO ₂	{5} [10]

QUESTION 9

2 moles of propane react with 8 moles of oxygen gas in a combustion reaction in the following equation: $1C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$				
9.1	What is the limiting reactant			
9.2	How many moles of carbon dioxide are formed			
9.3	How much of the excess reactant is left over?	{5} [16]		
QUESTION 10 10.1 Calculate the molarity of a solution prepared by dissolving 9.8 moles of solid NaOH				
	in enough water to make 3.62 L of solution. What does your answer tell you			
10.2	You dissolve 152.5 g of $CuCl_2$ in water to make a solution with a final volume of 2.25 L. What is its molarity?	{6} [12]		
QUESTION 11				
30g of C_3H_8 burns in air to produce 70g of CO_2 using the following reaction $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$.				
11.1	Calculate the theoretical yield	{7}		
11.2	Calculate the percent yield	{3} [10]		

QUESTION 12

Draw the atomic structure of Sodium (Na). Please indicate the number of electrons, neutrons, and protons with their respective charges the element has. [8]

Total Marks: 120

